Wednesday, February 10, 2016

Later Developments in Cinema

The history of the development of cinema after the early portion of the silent era is largely -- though not entirely -- a question of the gradual progress towards both sound and color. Each of these, as we've already seen, started much earlier than generally imagined; sound began with Dickson's "Experimental Sound Film" of 1894, and hand-painted color had already reached a high-water mark with Georges Méliès's 1900 version of Joan of Arc. With sound, the great problem was synchronization; there were all kinds of schemes for keeping sound -- as a phonograph record, an optical code, or any other pre-recorded substrate -- in time with image. When it came to color, hand-painted films -- even with stencils, and armies of (mostly female) colorists, it remained a premium mode without a premium payback. The main use of color in commercial film, in fact, was with tinting -- a process in which certain segments of film to be edited were run through chemical baths. An emotional scene might be bathed in red, while another encounter would be shown in blue or purple. The advantage of tinting was that all the varied colors could be achieved in post-production, at the director's discretion. Such scenes as the "mellow yellow" of the frame from an unknown film of this era, were common indeed. In some cases, tinted prints survive and have been restored; in others, the indications for tinting have been recreated in restoration. For a particularly fine example of tinting, have a look at the Flicker Alley restoration of F.W. Murnau's Phantom (we may view a few scenes from this in class).

At the same time, efforts progressed toward a technology that would bring about the appearnce (at least) of full color. The pioneer in this field was Charles Urban, an American expat in England who had already achieved success with his black-and-white films in the era of the "Cinema of Attractions." Urban realized that persistence of vision, the same principle that enabled the illusion of motion, could enable an illusion of color as well; this was the basis of his "Kinemacolor" system. Black-and-white was shot through a special camera using a spinning filter which filtered alternate frames in red and green. After developing the film, it was played back through alternating color filters, so that the "red" frames were tinted red and the "green" frames green; the result was something very close to the feeling of full color (though in fact the process missed part of the spectrum -- with dark blue being very imperfectly reproduced). Urban's process also had the huge technical advantage that, although special cameras and projectors were needed, the film was just ordinary black-and-white stock. Urban promoted his system through ambitious, epic-sized films shown in specially built, luxurious cinemas. Unfortunately for Urban, he was sued by cinema pioneer William Friese-Greene, who (falsely) claimed he had had the idea for this kind of color alternation before. As has happened with modern patent lawsuits, the British judges had no grasp of the technology on which they were ruling, confusing concept with practical art, and Friese-Greene's scheme of staining alternate frames (which produced only a muddy mess) with Urban's far superior pictures. They ruled in favor of Friese-Green, and Urban was eventually forced into bankruptcy. Friese-Greene was never able to bring his system to the point commercial success, though his son Claude, using a process much more like Urban's system than his father's, made a number of fine early color films.

Ironically, it was to be one of William Friese-Greene's original concepts -- dyed film which was glued or bonded together -- which would ultimately be the precursor of modern color processes. The Technicolor company started out with a red/green system much like Urban's; they called this "System 1." Films made with this system have a haunting, greenish-yellowish hue which, while perfect for horror features such as "Dr. X" (1932) was less well suited for dramatic or comedic subjects. They next developed "System 2," a subtractive color process in which two dyed films were cemented together, but the finished film was prone to bubbling and cupping. A third system transferred the dyed prints to a fresh single film, but was still limited to two colors.

By the mid-1903's Technicolor shifted to a three-strip system, which was shot on three separate films, which were then dyed and transferred to produce the final prints. This offered the first commercially successful full color image, although red and green still had the most zing -- thus Victor Fleming's choice of ruby slippers and green witch's makeup for 1939's The Wizard of Oz. Not many people realize it, but "Color by Technicolor" was a licensed process not owned by the studios; directors had to hire Technicolor's camera operators and technical consultants, as well as entrusting post-production to their facilities.

Now, as to sound: at nearly the same time, different technologies were being tried to synchronize sound with moving pictures. Emile Berliner was involved with a disc-based system; Edison offered a cylinder-based one, but neither achieved real success. All the various attempts at sound stumbled with the issue of synchronization until the development of optical soundtrack systems, which in turn had to wait until amplified electrical recording became possible in the mid-1920's. These, because they could be recorded on to the actual film, and duplicated along with it, were both reliable and economically feasible, though of course exhibitors would have to invest in new equipment. Although hailed as the first sound picture, 1927's "The Jazz Singer" in fact only had sound in certain portions of the film, and still relied on the old sound-on-disc system. Rival technologies -- RCA's "Photophone" system, Western Electric's variable density system -- vied for the new industry standard.

The introduction of sound to film brought with it a host of technical problems: microphones had limited range, and had to be hidden in potted plants and tableware; camera noise was too easily picked up, and cameras had to be encased in sound-proof coverings. Mary Pickford, one of the greatest stars of her day and a founder of United Artists, had a terrible experience with her 1929 sound film, "Coquette"; she had to strain her voice to get it picked up by the microphones, and the results were far from complimentary. Her UA partner Charlie Chaplin, though he eventually embraced the idea of using musical scores on his soundtracks, put off the use of voice; aside from a phonograph recording, a one-liner ("Get back to work!") and a nonsense song in 1936's "Modern Times," Chaplin did not use spoken dialogue in any of his films until "The Great Dictator" in 1940, though some years later he recorded narrative voice-overs for many of his early features. Nevertheless, sound, well before color, became a standard feature of film very soon after its introduction.

Next up: 3D film -- in 1922?!

Wednesday, February 3, 2016

The Origins of Cinema

Although its basic technical details are clear enough, the origins of cinema are shrouded in doubt, dispute, and even death. As with other media technologies, among the earliest uses of sequential images were in scientific projects, such as those of Marey and Muybridge. The technical problem confronting them both was how to get a series of images in quick, measured sequence. Muybridge used timers and tripwires to obtain sequential images; Marey, more direct, invented a cinematic gun which "fired" a cylinder of small photonegatives; it looked somewhat like a Thompson submachine gun but was limited to 12 exposures. What was really needed was some kind of double movement -- a shutter which would open and close quickly and repeatedly, and a mechanism which would advance the photosensitive material. When the material in question was glass plates, the problem was overwhelming -- but with the invention of celluloid photo "film" by George Eastman, a solution was in sight, and the prize belonged to the inventor who could best employ it.

Louis Augustin Le Prince (above) is my personal favorite among the many candidates for first filmmaker. He had gotten his start working on painted panoramas -- great circular paintings which created a sort of Victorian virtual reality -- where his job was projecting glass plate photos onto the canvas for artists to trace. Arriving in Leeds, England, in the late 1880's, he married into a well-off family, and his father-in-law financed further experiments. Le Prince's first design was a 16-lens camera, using a series of "mutilated gears" to fire off 16 frames in short order on two strips of film. He later designed a single-lens camera, with a mechanical movement using smooth rollers (sprockets not yet having been tried) to advance the film. He planned to stage a grand début in New York City, and had rented a private mansion for his demonstration; his equipment was packed into custom-made crates, and his tickets were purchased for crossing on a luxurious Cunard liner. And yet just then, as he was returning from visiting his brother in Dijon, France, he vanished from the Dijon-Paris express and was never seen again, alive or dead.

As with many early cinematographers, Le Prince's films do not survive. Eastman's celluloid turned out to be volatile; it could disintegrate into a brown powder, burst into flame, or even explode without warning. However, at some point, paper prints were made of three of his films, and these have been reconstructed into short, viewable sequences. The films were made in 1888, earlier than any others. His first film, "Roundhay Garden Scene," shows his family dancing about in his father-in-law's back garden; his second, "Leeds Bridge," shows traffic and pedestrians crossing a bridge in the city where he worked; the third, untitled, shows his young son playing an accordion as he dances upon a set of stairs. The only question is: with what camera were these shot? Distortions and perspective problems with the frames, as well as the fact that there are rarely more than 16 of them, suggest that the 16-lens camera is the most likely source, but some believe he used his single-lens camera for some or all of the films. If so, he was certainly the first person in the world to make what we have come to regard as cinema film.

Wednesday, January 27, 2016

Earliest Sound Recordings

The history of sound recording was once thought to begin with Thomas Alva Edison's phonograph of 1877. As with many of his inventions, Edison sketched out the idea, and gave it to his engineer, John Kruesi. Tests and improvements occupied most of the year, and the patent was finally filed in December. Legend has it that the first recording was of "Mary Had a Little Lamb," recited by Edison himself. Although Edison made later recordings of the same text, there is no surviving recording of any sound using the Edison system until more than a decade later, with the 1888 recordings of the Handel Festival at London's Crystal Palace (one of which can be heard here).

And yet, it turns out, there are actually sound recording which do survive from nearly 20 years earlier than Edison's invention. These were made using the Phonautograph (shown above) invented by Édouard-Léon Scott de Martinville. His device was not intended to permit the playback of sound; instead, using a sound-sensitive cone which etched its trace on paper coated with a fine layer of charcoal dust, the aim was to produce a visual record of sound. It was only in the twenty-first century that these visual traces were, with the aid of computer models, rendered back into audible sound, and even then there were glitches. The 1860 record of "Claire de Lune," though to be have been sung by a woman, turned out to be of much lower pitch, and sung by Scott himself! This device, indeed was extensively tested and deployed, and rumors circulate as to recordings of famous persons of the day, among them Abraham Lincoln. Such a recording would indeed be a find!

The capitalization of sound recording happened in many phases. Edison's own company, founded in 1878, failed to find any market for its recordings until more than a decade later, when improvements by other inventors -- chiefly Alexander Graham Bell -- rendered the Edison system practical for widespread use. The original system of tinfoil-covered paraffin was discarded in favor of various waxy compounds, which had the advantage that, though soft enough for recording, they could be hardened through baking. Later systems enabled the making of a wax matrix, which could be used to make molds to cast duplicate cylinders, enabling mass production of commercial recordings.

All of Edison's early discs used "hill and dale" recording, in which the sound waves formed, and later reproduced, impressions by degrees of vertical movement. This system had limited fidelity, and posed many technical hurdles; switching to a lateral (side-to-side) movement offered promise, but was not made commercially practical until Emile Berliner came up with the circular disc as opposed to the cylinder. Cylinder and disc fought it out from the late 1890's through the early 1920's, when Edison finally ceased cylinder production.

One of the lesser-known aspects of the Edison Cylinder system was that one could buy special "brown wax" cylinders and use them to make home recordings. This made the cylinder the one of the technologies prior to the home reel-to-reel and cassette tape decks in which the end user could make his or her own recordings.

All these systems were mechanical -- the actual sound waves moved the needle, and the needle physically reproduced them. The next step was what was called "electrical recording," using microphones to capture the sound, and relaying the signal to an electromagnetic cutting stylus. Mechanical systems could only be used with fairly loud instruments and voices; the ordinary spoken voice, or quieter instruments such as the guitar or banjo, could scarcely be recorded. Electrical recording, thanks to amplification, could be much more sensitive in the studio -- and much louder on playback.

Such a system did not come into wide use until 1927, at which time record companies made enormous efforts to send out "field recording" vans which used this new technology to capture popular forms of music -- country blues, jug bands, fiddlers, and banjoists -- whose talents could now be cheaply recorded and mass produced. The Great Depression put an end to most of these efforts, and it wasn't until after World War II that the recording "industry" began its greatest epoch. Cheap players and cheaper records -- the constant-value cost of a 45 rpm single was a fraction of a 78 rpm record -- along with the rise of radio as a promotional tool, turned the record business into a global, multi-billion dollar behemoth. The arrival of digital CD's at first only extended and multiplied this vast empire, in part because people bought the same music again in the new format.

And yet, with the advent of the internet and audio compression paradigms such as MP3, the industry began to fizzle; its old bargain of turning the ephemeral -- music performance -- into the physical -- a disc or cylinder or tape -- was undone, as MP3's were almost as ephemeral, and as readily copied and transported, as the music itself. In the 2000's, the CD business has essentially collapsed into a small specialty market, and even online sales have fallen below the pace (due in part to unpaid downloads, and in part to users transferring their older recordings to the new format). Music is, once again, in the hands of the people.

Wednesday, January 20, 2016

Writing as Technology

We are accustomed to think of books, and print in general, as old and familiar things. To us, books are the "real" which may or may not be supplanted by the "virtual" -- Kindles, Nooks, and Google e-books. This makes it a bit difficult for us to recover the sense that the book, like the scroll before it, and the clay tablet before that, is a technical development, one which initially seemed strange to a world which had not known any means of preserving words and keeping them "stored" for another day. There's a video, which I like to call "Book 1.0" on YouTube that illustrates this perfectly. The book is no more a "natural" object than is a smartphone or an automobile; it has simply been around so long that we have gotten used to it, and now begin to fear that we may "miss" it.

Walter J. Ong, the brilliant Jesuit scholar and pupil of Marshall McLuhan, was one of the first scholars to realize and emphasize the technological status of writing. For Ong, writing not only changes our practical lives, it actually restructures our consciousness. This happens in a number of ways; our tendency to think of knowledge as persistent, as capable of being stored elsewhere -- and with it our sense that we ourselves don't have to precisely remember anything -- is one key effect. Beyond this, though, our whole sense that by naming, cataloging, and finding form in things that we are in fact re-figuring the world; that our mental abstractions seem to have shape and permanence; that there can even be a thing such as "capitalism," "Marxism," or "psychology" are also after-effects of writing and print. Print, by making massive amounts of text cheap to make, distribute, and preserve, accelerated these changes; with the dawn of the internet, this process has taken another enormous leap. The disappearance of objects -- the book, the music CD, the videocassette or DVD -- and their replacement by the mere making available of media streamed from somewhere else, is one notable result of this accelerating process.

At the same time, Ong emphasized the complexity and sophistication of the non-literate mind (he disliked the term "pre-literate" at it presumes a progression toward writing as inevitable). The ancient Irish bards had to memorize hundreds of lengthy poems; in the 1920's in Yugoslavia, Ong's mentor Walter Lord found pairs of men who could, by singing interlocked lines back and forth between each other, reproduce an epic poem of tens of thousands of lines. Such poems are as ancient as speech itself, and a few -- the Elder Edda, Beowulf, the Kalevala, and Homer's Iliad and Odyssey -- survived into the manuscript era, the print era, and are now downloadable as e-books. And yet, in this disposable era, when computers and cellphones complete the circuit from shiny new tech devices to e-rubbish in a landfill in a few short years, the old belief -- that writing something down preserves it -- may yet be reversed.

Some say that E-books aren't proper books at all. Some point to events such as Amazon's silent deletion of copies of George Orwell's Animal Farm from Kindle readers as a cautionary tale. The Pew Charitable Trust recently completed a survey of e-books and readers, and some of its findings are quite unexpected.

So where do we go from here? Will e-readers be the death of the book? Will a dusty old paperback become a sort of weird antique, joining 78 rpm records, 16 mm film, and Betamax cassettes in the dead media junkpile? Or will we always, whatever else we have with them, have books?

Friday, January 15, 2016

Weekly Schedule

As the semester draws near, I wanted to let everyone know our weekly meeting schedule. Although the online system shows us meeting Mondays and Wednesdays in Alex & Ani 140, we will actually only meet as a group on Wednesdays; our first meeting will be on January 20th. The group meeting will enable us to share media screenings, have open discussion, and cover some materials that are best covered in person. Aside from these meetings, there will also be individual one-on-one meetings in my office (Craig-Lee 356) at several points during the semester.

As mentioned in the first post, there is no physical textbook for the class as a whole; all the required readings will be made available to you via links on this blog. There will be some recommended books, and as we learn more about each others' interests, I may give individualized recommendations.

I'm looking forward to working with everyone -- see you on the 20th!

Saturday, January 2, 2016

Welcome to Media Culture I

Welcome to the blog and resource page for Media Culture I here at Rhode Island College. This will be, for some of you, your first course in the M.A. program, and I want to be sure that you can get all the information you need about the class here at one place on the Web.

In the early days of this class, and the M.A. program, I used to say that online resources would "supplement" the text -- but it's soon reaching the point where it's the online resources that are the main course, and the book which has become a sort of index or guidebook for them. You'll find the main links at the top right-hand side of the blog; as we progress, additional readings will be posted on the blog which will contain the other links to texts, images, and sounds you'll need. The links will be dynamic, and as additional resources, online articles, or projects become available, I'll post links to them at the side; be aware that the list will change over time, and you may need to look again to find newly added links.

If you have any questions about the class, or comments on the materials, or would like to comment on other students' postings, this is the place to do it. I look forward to meeting each of you at our first class.